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Exact Solutions of Some Nonlinear Equations 
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Received May 26, 1992 

We obtain exact solutions of three nonlinear diffusive equations and of the KdV- 
Burger equation by making an ansatz for the solution in each case. 

1. INTRODUCTION 

Methods of  solving nonlinear partial differential equations are limited in 
number. Moreover, each of the methods, e.g., the inverse scattering method 
(Gardner et al., 1967), Hirota's method (Hirota, 1971), the trace method 
(Wadati and Sawada, 19801, and the direct algebraic method (Hereman 
et al., 1986), has some limitations. In this paper, we give exact solutions of 
four nonlinear equations in a rather simple way, using the methodology of 
Lan and Kelin (1990). These exact solutions are completely different in form 
from those of Ablowitz and Zeppetalle (1979), McKean (1970), and Reitz 
(1981), which are all perturbative solutions. 

2. M E T H O D  OF SOLUTION 

2.1. Nagumo's Equation 

For a large class of general one-dimensional single-component diffusive 
equations, a representative model is usually given by 

Ot - d ~ x 2 + F ( c ~ )  (2.11 
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where F(r  is some nonlinear function of r and d is the diffusion coefficient; 
of particular importance in equation (2.1) is the polynomial case 

F ( r 1 6 2  + f l r  

where m and n are integers. For example, m =  1 and n = 2  ( a  = - f l  = l) gives 
the Fisher equation (Lakshmanan and Kaliappan, 1979); when m = 1 and 
n = 3, we have Nagumo's equation (McKean, 1970) ; and when m = l+  l, n = 
2l+ l (a =/3 = K) we have the Splading equation (Reitz, 1981). So Nagumo's 
equation takes the form 

~b,- d~b~ = r - r 3 (2.2) 

We now look for traveling wave solutions of (2.2) ; that is, we assume 

r (x, t) = r (x - s = ~b ( ~ ) (2.3) 

where ~ is the velocity to be determined. Inserting (2.3) in (2.2), we get 

- ~ . r  - d r  = r - r  ( 2 . 4 )  

With regard to equation (2.4), following the method of Lan and Kelin 
(1990), we make the following ansatz: 

r  ~, ai(tanh/2~)" (2.5) 

where the integers m', ai ( i= 1 . . . . .  m'), and/2 are parameters to be deter- 
mined. The requirement that that highest power of the function tanh/2 ~ for 
the nonlinear term ~b 3 and that for the derivative term r must be equal 
gives the following relation: 

3 m ' = m ' + 2  

Thus we get m ' =  1 and equation (2.5) can be written as 

r  tanh/2~ (2.6) 

Inserting equation (2.6) into (2.4), we get the following parametric equations 
upon equating the same powers of tanh p 4: 

-Xalp = a0 - a~ 

- 2 a l d p  2 = al - 3a~al 

2al/2 = - 3aoa 2 

2 a l d p  ~ = - a ~  

(2.7a) 

(2.7b) 

(2.7c) 

(2.7d) 
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F r o m  (2.7), we get 

a0 = 4-(2/5) 1/2 

al = 4 - (1 /5)  I/2 

].l= 4-(1/lOd) 1/2 

A, = + ( 3 6 d / 5 )  1/2 

Thus we obtain exact solutions o f  equat ion (2.2) representing waves in both 
directions. 

2.2. Fisher's Equation 

Fisher 's  equat ion reads 

q~t- d~b= = ~b - ~b 2 (2.8) 

For  the traveling wave solution, we assume 

q~ (x, t) = ~b (x - Xt) = ~ ( ~ ) (2.9) 

where ,t, is the velocity to be determined. 
Inserting (2.9) into (2.8), we get 

- )~b~ - d q ~  = ~b - q}2 (2.10) 

With regard to equat ion (2.10), we again make the ansatz (2.5) and here the 
requirement  that  the highest power of  the function (tanh/1 {)  for the non- 
linear term ~b 2 and that  for  the derivative term 4'r must  be equal gives the 
following relation: 

2 m ' = m ' + 2  

Thus,  here we get m ' =  2 and equation (2.5) now takes the form 

~b=ao+al  t anh / /~  q- a2 tanh 2 p~ (2.11) 

Inserting equat ion (2.11) into (2.10), we get the following parametr ic  equa- 
tions upon equating the same powers of  ( tanh/1 {)  : 

-2aj/ , t  - 2azd/,t 2 = a0 - ao 2 

-2a2  ~tk, + 2 a ld l ,  t 2 = al  - 2 a o a l  

.,].adt + 8 a 2 d 1 3 2 = a 2  - 2 a~ - 2aoa2  

2 p a 2 ~ -  2 a l d l 3 2  = - 2 a l a 2  

- 6 a 2 d l  a2 = -a22 

(2.12a) 

(2.12b) 

(2.12c) 

(2.12d) 

(2.12e) 
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From equations (2.12), we get 

ao = 1/4 

a l= 4-1/2 

a2 = 1/4 

p = 4-(1/24d)1/2 

2~= +5(d/6) 1/2 

Thus we obtain exact solutions of equation (2.8) representing waves capable 
of moving in both directions. 

2.3. Splading Equation 

The Splading equation has the form 

(at-ddpxx= K[cy" + c~ "1 (2.13) 

where m = l+ 1 and n = 2l+ 1. In this case, the requirement that the highest 
power of (tanh p ~) for the nonlinear term ~b 2/+ ~ equal that for the derivative 
term ~b** gives 

m ' + 2 = ( 2 l +  1)m' 

Thus we get m'= 1/l. Now, since m', m, and n fire integers, the Splading 
equation can be solved by the technique used here for l= 1 only. We give 
the solution, obtained as before: 

q~= a0+a~ tanh p~ (2.14) 

where 

"~ 3 a o = [ - 1  + (_.2Kd),/2]/ (2.15a) 

al = -I- (~ 2KN~ 2)1/2 (2.15b) 

together with one constraint relating &,/.t, K, d, and ao: 

T )~ ( - 2 d  ) ' / 2p 2 = Ka~ (1 +ao) 

2.4. KdV-Burger Equation 

The KdV equation perturbed by a Burger-like dissipative term reads 

ut + p uux + pu .... - vuxx = 0 (2.16) 
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When the dissipation is dominant, equation (2.16) is known to possess 
shocklike solitary waves, while in the pure dispersive limit (v = 0), equation 
(2.16) admits KdV solutions (Reinisch et al., 1978). Using Lie's method 
of continuous transformation groups, Lakshmanan and Kaliappan (1979) 
deduced a class of invariant solutions which are in general not of Painleve 
type. Equations (11) and (12) of Lakshmanan and Kaliappan (1979) take 
the following forms when fl = 0: 

Substituting (2.17) into (2.16) and integrating once, we get 

fr162162 f C~ (2.18) 

where Co is the constant of integration. 
We now make the following scale transformation: 

~b = K1 f +  K2 (2.19a) 

{=K3+K4 (2.19b) 

Equation (2.18) is then reduced to the form 

c ~ v (  a2P 2 / -1/4 

This is of the form of equation (2.10) except 

_ v (  a2p 2 ~-1/4 

)~= p \62 + Za2ppCo ] , d = l  

From this we infer that the KdV-Burger equation has the same traveling 
wave solutions as in the case of Fisher's equation with arbitrary wave speed 

6=+ - 2ppCo 
a \ 625 
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